Advertisment

Focus on the trends: The forums program

At LASER World of PHOTONICS 2022, four forums will offer an exciting and application-oriented program of presentations on the current areas of application for lasers and photonics:

  • Lasers and Optics Forum (Hall C5).
  • Forum Biophotonics, Medical Applications, Optical Metrology and Imaging (Hall B5)
  • Forum Laser Materials Processing (Hall A5)
  • New: Forum World of QUANTUM (Hall C6)

The lecture program features the following formats:

Application Panels
The Application Panels are a series of application-oriented presentations on a current topic with the aim of addressing all facets through various presentations and speakers. An application panel lasts about 2 hours. Afterwards, all speakers are available for bilateral discussions. For each application panel, chairs are responsible for putting together the program and selecting the speakers, and they also moderate the panel.

Lectures by exhibitors
LASER World of PHOTONICS exhibitors will present their latest products, systems and services in 20-minute presentations.

Advertisment

Exhibitors at the trade show can register here:

Sign up forum slot

Further highlights
In addition, other program highlights such as the opening of LASER World of PHOTONICS together with the new World of QUANTUM, discussion rounds and award ceremonies will take place at the forums.

The visit to the forums is included in the tickets for the trade fair and is free of charge.

Lasers and Optics (Hall C5)

CW- and Long Pulse Lasers
Chairs:

  • Klaus Kleine, Coherent LaserSystems GmbH & Co. KG
  • Hans-Dieter Hoffmann, Fraunhofer-Institut für Lasertechnik ILT
  • Prof. Andreas Tünnermann, Fraunhofer Institut für Angewandte Optik und Feinmechanik IOF

Abstract:

Despite the fact that lasers with continuous or pulsed emission with pulses down to ns range are widely established tools in industry and science, there have been highly interesting new developments in the past years. Examples are the first detection of gravitational waves based on ultra low bandwidth and low noise CW lasers, as well as the production of the most recent generation of µ-chips where pulsed CO2 lasers with average power in the multi 10 kW play a key role. Further examples are green and UV lasers with average power from multi 100 W to kW range enabling new applications in electronics and high power electrics industries.

You will get an overview of the latest state of commercial laser technology in this application panel. The presentations will be given by selected speakers from international market leaders in the field of high-power lasers.

Ultrashort Pulse Lasers and Beam Delivery
Chairs:

  • Dr. Thomas Rettich, TRUMPF GmbH + Co. KG
  • Hans-Dieter Hoffmann, Fraunhofer-Institut für Lasertechnik ILT
  • Prof. Andreas Tünnermann, Fraunhofer Institut für Angewandte Optik und Feinmechanik IOF

Abstract:

Sources of ultrashort and high peak power optical pulses improve existing and enable new applications in science and industry. Considerable progress has been made to realize reliable and highly efficient femtosecond and picosecond sources based on diode pumped solid state and fiber technology. Using novel laser concepts, output powers exceeding the kW level have been demonstrated for these systems even in femtosecond pulse operation. New sources offer emission wavelength in the green and ultraviolet spectral range.

This application panel provides an overview about the recent progress. The panel enables you to compare state of the art laser concepts for operation in industrial environment. The presentations will be given by selected speakers of international market leaders in the field of ultrafast lasers

High power diode lasers: better, more colorful, higher performance!
Chairs:

  • Dr. Martin Traub, Fraunhofer-Institut für Lasertechnik ILT
  • Dr. Jörg Neukum, Coherent Mainz (Dilas Diodenlaser GmbH)

Abstract:

High-power diode lasers (HPDLs) serve an extremely broad variety of applications, ranging from medical technology and metrology to pump applications and material processing. Significant progress in output power, brightness and production technology is still extending their range of applications. Compared to other lasers, HPDLs offer highest wall-plug efficiency, compact size, low costs, high reliability and low maintenance. Innovative HPDL designs, i.e. those emitting blue laser radiation, as well as the diode manufacturing technology show this technology’s potential to reach applications like welding of copper which were so far dominated by solid state lasers. Besides edge emitters, vertical emitters (VCSEL) and their applications will be discussed. The presentations will be given by selected speakers of international market leaders in the field of HPDLs and cover beam sources for various applications.

Lasers Materials Processing (Hall B5)

No E-Mobility without Lasers – Laser-based Manufacturing of Batteries and Fuel Cells
Chairs:

  • Dr.-Ing. Alexander Olowinsky, Fraunhofer-Institut für Lasertechnik ILT
  • Dr.-Ing. Hans-Joachim Krauß, Bayerisches Laserzentrum GmbH (BLZ)
  • Dr. Günter Ambrosy, TRUMPF Laser und Systemtechnik GmbH

Abstract:

Smart Mobility: Batteries and fuel cells are the core components for alternative drives and energy storage systems. Lasers have already become an integral part of production: structuring and cutting of electrodes, contacting of battery cells or welding of bipolar plates.

New processes and new beam sources are used here. In addition to increasing process speeds and reproducibility, the integration into digital process chains also plays an important role in their implementation in industrial manufacturing systems.
This panel gives an insight into the important laser beam machining processes and shows exciting industrially relevant implementations in practice.

Is AI making laser-based manufacturing smart?
Chairs:

  • Ulrich Thombansen, Fraunhofer-Institut für Lasertechnik ILT
  • Prof. Michael Schmidt, Bayerisches Laserzentrum Gemeinnützige Forschungsgesellschaft mbH (BLZ)

Abstract:

Laser-based manufacturing processes are continuously gaining in importance. Their advantages in terms of process speed, contactless interaction and digitizability make them ideal for advanced production. In this environment, a growing influence of machine learning (ML) and artificial intelligence (AI) methods can be observed. While these tools are already state of the art in areas such as marketing and logistics, in manufacturing there are early success stories as well as issues and concerns about applying them to critical processes.

In the session, industrial users will report on entry barriers, means and successes in using new processes in the context of laser-based manufacturing. With regard to current developments in this technologically challenging area, industry and academia will jointly report on current issues and approaches to solving problems such as "digital noise" and "deterministic intelligence".

Manufacturing of Micro-structures with Pulsed Lasers
Chairs:

  • Dr. Dirk Müller, Coherent
  • Dr. Ulf Quentin, TRUMPF GmbH + Co. KG

Abstract:

Micro-structures are ubiquitous all around us. They are adding value in devices across markets as wide spread as micro-electronics, medical and aerospace. This forum will focus on manufacturing techniques to create micro-structures at a scale and in materials that are otherwise difficult or more costly to generate by conventional methods.

The cost competitive aspect of these micro-structuring processes are emphasized. Lowest cost means using the right laser and the shortest pulse is not always the best solution. Presentations will span examples with lasers ranging in pulse duration from femtosecond, picosecond to nanosecond.

Efficient Laser Material Processing using Modeling and Simulation
Chairs:

  • Dr. Jens Schüttler, Coherent
  • Prof. Wolfgang Schulz, Fraunhofer-Institut für Lasertechnik ILT

Abstract:

Today, simulation tools and methods have reached a mature level that allows relevant predictions about the behavior of complex manufacturing processes. The key components for a successful application are the right choice of the underlying models, the inclusion of experimental knowledge and the reduction of numerical complexity to a manageable extent.

The lectures of this Application Panel will show selected examples how simulation is used today to develop laser-based manufacturing processes in a targeted manner in order to increase their efficiency and quality.

Additive Manufacturing - News from the 3D printing of metallic components!

Chairs:

  • Dr. Wilhelm Meiners, TRUMPF GmbH + Co. KG
  • Christian Tenbrock, Fraunhofer-Institut für Lasertechnik ILT

Abstract:

follows soon!

Biophotonics, Medical Applications, Optical Metrology and Imaging (Hall B5)

Biophotonic with DL meets Pathology, Point of Care and Laboratory Medicine / DGLM & LGT
Chairs:

  • Prof. Dr. Ronald Sroka, LIFE-Zentrum, LMU Klinikum, München / DGLM
  • Dr. med. Carsten Philipp, Zentrum Lasermedizin, Evangelische Elisabeth Klinik Krankenhausbetriebs gGmbH, Berlin / DGLM
  • Prof. Jürgen Popp, Leibniz-IPHT // LGT und DGLM

Abstract:

In recent year, the topic "Biophotonics in Medicine“ has further evolved in various respects. In-vitro diagnostics based on biophotonic methods and phenomena is an integral part in pathology and laboratory medicine, while new methods are continuously being integrated. Highly interesting new in-vivo methods benefit from the further development of techniques and instrumentation, but they are also facing challenges brought about by the fact that national and international rules universally complicate the translation into the clinics. In this context, point-of-care applications constitute an interesting possibility for entering the market, also for smaller enterprises. New technologies of information processing (artificial intelligence, deep learning) are also facing conflicting demands of unforeseen new possibilities on the basis of huge amounts of data on one hand and questions of data privacy and medical responsibility on the other hand. Experts from medicine, research and industry will report on new technological possibilities, boundary conditions and marketing options in medicine and related fields.

Smart laser solutions for bio-hybrid organs
Chairs:

  • Prof. Jürgen Stampfl, TU Wien – Institute of Materials Science and Technology
  • Dr. Nadine Nottrodt, Fraunhofer-Institut für Lasertechnik ILT

Abstract:

The development of powerful, economic and compact laser sources enables the versatile use of such light sources in biofabrication. Cells respond to topographical, mechanical, and biochemical properties of the environment. Methods such as multiphoton lithography, laser induced forward transfer (LIFT) and orthogonal photochemistry enable the fabrication of three-dimensionally structured cell environments, defined in terms of both mechanical characteristics such as stiffness and viscosity and functional (biochemical) properties on a size scale corresponding to the dimensions of biological cells.

The application panel will discuss, among other things, current approaches to 3D and 4D cell cultures, which enable the production of organs or their precursors (organoids, spheroids, tissues) using the methods described above. The panel will focus on hybrid systems in which laser processing offers new concepts for better connection between biological and engineering systems.

Biophotonic Technologies for Point-of-Care-Testing of Infectious Diseases: Pathogen, Antibiotic Resistance and Immune Response / LGT & DGLM
Chairs:

  • Prof. Jürgen, Popp, Leibniz-IPHT // JenaPhotonics®
  • Dr. Markus Lankers, MIBIC GmbH & Co KG
  • Dr. Jörg Weber, Biophotonics Diagnostics GmbH

Abstract:

The current pandemic is a strong indication that there is an enormous need for fast and reliable diagnostics of infectious agents such as viruses and bacteria, if possible on site. The same applies to the massive increase in antimicrobial resistance. The diagnosis of infectious diseases, especially with biophotonic methods, is both a highly innovative field of research and a rapidly growing market. Scientific findings must be quickly translated into products.

This requires early, close cooperation between the various disciplines and industry. Accordingly, this panel will bring end users together with researchers and technology developers in the field of biophotonics and therefore starts with a presentation by a clinician to illustrate the medical requirements. Speakers from research and industry will translate medical requirements into technological needs and present solutions along the entire value chain.

Laser solutions for biotechnology in times of infectious diseases
Chairs:

  • Dr. Matthias Schulze, Coherent
  • Dr. Victor Matylitsky, High Q Laser GmbH - MKS Instruments, Inc.

Abstract:

In recent years, photonics-based solutions have become a key enabling element supporting innovation in Bioinstrumentation. When faced with infectious disease challenges, such as the current Covid-19 Pandemic, photonics is helping to develop successful response efforts: from research through translation to therapeutic strategies, as well as in the development and validation of vaccines.

A standout example of these photonic-enabled techniques is flow cytometry which is providing new detailed insights into how the immune systems works and responds to infections. A key innovation to providing a deeper understanding is to increase number of parameters to be simultaneously measured in cytometry. This has translated into the need for the laser industry to provide new wavelengths. In addition, the development of integrated multi-wavelength light engines is shortening the time to market for new cytometry instruments.

Another key area in life sciences research is neuroscience, where new concepts in fs laser sources enable innovative methods to unravel neural and brain functionalities. And in microscopy imaging, applications in many fields are benefiting from new techniques such as light sheet microscopy, again supported by advances in lasers and related photonics products. This Application panel will highlight the synergism between laser and photonic developments and innovations in life sciences applications.

Artificial Intelligence (AI) and Virtual Reality (VR) applications in medicine
Chairs:

  • Dr. Mark Bischoff; Carl Zeiss AG
  • Dr. Ralf Brinkmann, Universität zu Lübeck und Medizinisches Laserzentrum Lübeck GmbH

Abstract:

Artificial Intelligence (AI) and Virtual Reality (VR) are increasingly spreading in a wide range of application fields and are already integrated into our everyday life to some extent. In modern medicine both techniques are currently being evaluated in various disciplines to explore their potential for diagnostics and therapy support.

NEW: World of QUANTUM (Hall C6)

The program of the World of QUANTUM Forum is currently being coordinated and will follow shortly.

Language: The application panels are held in English.
Location: At the forum in the respective exhibition hall.
Admission: The panels are open to all trade-fair visitors, exhibitors and congress participants.
Advertisment
Advertisment
Advertisment
Advertisment
Advertisment
Supporting program
Information program

Visitors who attend LASER World of PHOTONICS experience an information program that covers the world of photonics.

Information
Supporting program
Event calender

The event database of LASER World of PHOTONICS.

Event database
Visitors
Be part of it

Fast, easy and convenient: Secure your ticket now.

Tickets & Prices