Advertisment

Focus on the trends: The application panel program

At LASER World of PHOTONICS 2022 practice-oriented application panels will be focusing on the current application sectors for lasers and photonics.

Advertisment

Lasers, Optics and Quantum Technology

High power diode lasers: better, more colorful, higher performance!
Chairs:

  • Dr. Martin Traub, Fraunhofer-Institut für Lasertechnik ILT
  • Dr. Jörg Neukum, Coherent Mainz (Dilas Diodenlaser GmbH)

Abstract:

High-power diode lasers (HPDLs) serve an extremely broad variety of applications, ranging from medical technology and metrology to pump applications and material processing. Significant progress in output power, brightness and production technology is still extending their range of applications. Compared to other lasers, HPDLs offer highest wall-plug efficiency, compact size, low costs, high reliability and low maintenance. Innovative HPDL designs, i.e. those emitting blue laser radiation, as well as the diode manufacturing technology show this technology’s potential to reach applications like welding of copper which were so far dominated by solid state lasers. Besides edge emitters, vertical emitters (VCSEL) and their applications will be discussed. The presentations will be given by selected speakers of international market leaders in the field of HPDLs and cover beam sources for various applications.

CW- and Long Pulse Lasers
Chairs:

  • Frank Gäbler, Coherent LaserSystems GmbH & Co. KG
  • Hans-Dieter Hoffmann, Fraunhofer-Institut für Lasertechnik ILT
  • Prof. Andreas Tünnermann, Fraunhofer Institut für Angewandte Optik und Feinmechanik IOF

Abstract:

Despite the fact that lasers with continuous or pulsed emission with pulses down to ns range are widely established tools in industry and science, there have been highly interesting new developments in the past years. Examples are the first detection of gravitational waves based on ultra low bandwidth and low noise CW lasers, as well as the production of the most recent generation of µ-chips where pulsed CO2 lasers with average power in the multi 10 kW play a key role. Further examples are green and UV lasers with average power from multi 100 W to kW range enabling new applications in electronics and high power electrics industries.

You will get an overview of the latest state of commercial laser technology in this application panel. The presentations will be given by selected speakers from international market leaders in the field of high-power lasers.

Ultrashort Pulse Lasers and Beam Delivery
Chairs:

  • Dr. Thomas Rettich, TRUMPF GmbH + Co. KG
  • Hans-Dieter Hoffmann, Fraunhofer-Institut für Lasertechnik ILT
  • Prof. Andreas Tünnermann, Fraunhofer Institut für Angewandte Optik und Feinmechanik IOF

Abstract:

Sources of ultrashort and high peak power optical pulses improve existing and enable new applications in science and industry. Considerable progress has been made to realize reliable and highly efficient femtosecond and picosecond sources based on diode pumped solid state and fiber technology. Using novel laser concepts, output powers exceeding the kW level have been demonstrated for these systems even in femtosecond pulse operation. New sources offer emission wavelength in the green and ultraviolet spectral range.

This application panel provides an overview about the recent progress. The panel enables you to compare state of the art laser concepts for operation in industrial environment. The presentations will be given by selected speakers of international market leaders in the field of ultrafast lasers

Optical Quantum Technologies: Communication
Chairs:

  • Prof. Andreas Tünnermann, Fraunhofer Institut für Angewandte Optik und Feinmechanik IOF
  • Dr. Christoph Glingener, ADVA Optical Networking SE

Abstract:

Quantum communication is dedicated to the transmission of quantum states between two or more points. Photons, i.e. tiny amounts of light, can be used for this purpose by fiber or free beam earthbound or by satellite.

One of the most promising and already demonstrated applications is quantum key distribution (QKD). Together with established cryptographic methods, QKD enables quantum-secure information transmission. The corresponding technologies also offer further perspectives, from networking future quantum computers to better time synchronization or secure data storage.

This application panel combines an introduction to quantum communication with application-oriented contributions from research and industry.

Optical Quantum Technologies: Sensing and Imaging
Chairs:

  • Dr. Wilhelm Kaenders, TOPTICA Photonics AG
  • Prof. Karsten Buse, Fraunhofer-Institut für Physikalische Messtechnik IPM

Abstract:

Quantum sensing and quantum imaging utilize individual quantum states in atoms and solids or quantum mechanical properties of photons to develop novel measurement concepts.

The goal is to realize new sensors with higher detection sensitivity and precision or with significantly reduced complexity. The new generation quantum sensors promises not only added value for existing applications, but also the appearance of entirely new disruptive fields.

Optical and microwave methods for the preparation and readout of the quantum states play an outstanding role in this context. Photons thus become important enablers of the new quantum technologies. Well-known examples are optical atomic clocks and well as atom-based magnetic field sensors and acceleration sensors. The session combines insights into the research field with contributions from companies on cutting edge developments of quantum sensors.

Optical Quantum Technologies: Photonics - Enabler for Supreme Quantum Computing
Chairs:

  • Dr. Sebastian Luber, Infineon Technologies AG
  • Dr. Bernd Jungbluth, Fraunhofer-Institut für Lasertechnik ILT

Abstract:

Quantum computers promise a paradigm shift in data processing and exponential performance advantages over classical computers. The exploitation of quantum mechanical properties enables a novel approach to specific problems that were previously almost impossible to solve. Today, quantum computers are able to demonstrate a dramatic speed advantage for specific - purely academic - computing tasks.

Even if these systems are still too error-prone for more extensive use, a quantum advantage should also be achieved in practical applications in the future, for example for portfolio optimizations in the financial sector or in the development of medical active agents. Among the numerous approaches for the realization of quantum computers are also promising platforms in which photonic technologies are integral system components. For example, they handle the control, manipulation and readout of quantum states. In the panel, selected experts from industry and research will report on the potential and the current state of development.

Lasers Materials Processing

No E-Mobility without Lasers – Laser-based Manufacturing of Batteries and Fuel Cells
Chairs:

  • Dr.-Ing. Alexander Olowinsky, Fraunhofer-Institut für Lasertechnik ILT
  • Dr.-Ing. Hans-Joachim Krauß, Bayerisches Laserzentrum GmbH (BLZ)
  • Dr. Günter Ambrosy, TRUMPF Laser und Systemtechnik GmbH

Abstract:

Smart Mobility: Batteries and fuel cells are the core components for alternative drives and energy storage systems. Lasers have already become an integral part of production: structuring and cutting of electrodes, contacting of battery cells or welding of bipolar plates.

New processes and new beam sources are used here. In addition to increasing process speeds and reproducibility, the integration into digital process chains also plays an important role in their implementation in industrial manufacturing systems.
This panel gives an insight into the important laser beam machining processes and shows exciting industrially relevant implementations in practice.

Efficient Laser Material Processing using Modeling and Simulation
Chairs:

  • Dr. Jens Schüttler, Coherent
  • Prof. Wolfgang Schulz, Fraunhofer-Institut für Lasertechnik ILT

Abstract:

Today, simulation tools and methods have reached a mature level that allows relevant predictions about the behavior of complex manufacturing processes. The key components for a successful application are the right choice of the underlying models, the inclusion of experimental knowledge and the reduction of numerical complexity to a manageable extent.

The lectures of this Application Panel will show selected examples how simulation is used today to develop laser-based manufacturing processes in a targeted manner in order to increase their efficiency and quality.

Manufacturing of Micro-structures with Pulsed Lasers
Chairs:

  • Dr. Dirk Müller, Coherent
  • Dr. Ulf Quentin, TRUMPF GmbH + Co. KG

Abstract:

Micro-structures are ubiquitous all around us. They are adding value in devices across markets as wide spread as micro-electronics, medical and aerospace. This forum will focus on manufacturing techniques to create micro-structures at a scale and in materials that are otherwise difficult or more costly to generate by conventional methods.

The cost competitive aspect of these micro-structuring processes are emphasized. Lowest cost means using the right laser and the shortest pulse is not always the best solution. Presentations will span examples with lasers ranging in pulse duration from femtosecond, picosecond to nanosecond.

Is AI making laser-based manufacturing smart?
Chairs:

  • Ulrich Thombansen, Fraunhofer-Institut für Lasertechnik ILT
  • Prof. Michael Schmidt, Bayerisches Laserzentrum Gemeinnützige Forschungsgesellschaft mbH (BLZ)

Abstract:

Laser-based manufacturing processes are continuously gaining in importance. Their advantages in terms of process speed, contactless interaction and digitizability make them ideal for advanced production. In this environment, a growing influence of machine learning (ML) and artificial intelligence (AI) methods can be observed. While these tools are already state of the art in areas such as marketing and logistics, in manufacturing there are early success stories as well as issues and concerns about applying them to critical processes.

In the session, industrial users will report on entry barriers, means and successes in using new processes in the context of laser-based manufacturing. With regard to current developments in this technologically challenging area, industry and academia will jointly report on current issues and approaches to solving problems such as "digital noise" and "deterministic intelligence".

Biophotonics, Medical Applications, Optical Metrology and Imaging

Artificial Intelligence (AI) and Virtual Reality (VR) applications in medicine
Chairs:

  • Prof. Manfred Dick, Carl Zeiss Meditec AG
  • Dr. Ralf Brinkmann, Universität zu Lübeck und Medizinisches Laserzentrum Lübeck GmbH

Abstract:

Artificial Intelligence (AI) and Virtual Reality (VR) are increasingly spreading in a wide range of application fields and are already integrated into our everyday life to some extent. In modern medicine both techniques are currently being evaluated in various disciplines to explore their potential for diagnostics and therapy support.

Laser solutions for biotechnology in times of infectious diseases
Chairs:

  • Dr. Matthias Schulze, Coherent
  • Dr. Victor Matylitsky, High Q Laser GmbH - MKS Instruments, Inc.

Abstract:

In recent years, photonics-based solutions have become a key enabling element supporting innovation in Bioinstrumentation. When faced with infectious disease challenges, such as the current Covid-19 Pandemic, photonics is helping to develop successful response efforts: from research through translation to therapeutic strategies, as well as in the development and validation of vaccines.

A standout example of these photonic-enabled techniques is flow cytometry which is providing new detailed insights into how the immune systems works and responds to infections. A key innovation to providing a deeper understanding is to increase number of parameters to be simultaneously measured in cytometry. This has translated into the need for the laser industry to provide new wavelengths. In addition, the development of integrated multi-wavelength light engines is shortening the time to market for new cytometry instruments.

Another key area in life sciences research is neuroscience, where new concepts in fs laser sources enable innovative methods to unravel neural and brain functionalities. And in microscopy imaging, applications in many fields are benefiting from new techniques such as light sheet microscopy, again supported by advances in lasers and related photonics products. This Application panel will highlight the synergism between laser and photonic developments and innovations in life sciences applications.

Biophotonic Technologies for Point-of-Care-Testing of Infectious Diseases: Pathogen, Antibiotic Resistance and Immune Response / LGT & DGLM
Chairs:

  • Prof. Jürgen, Popp, Leibniz-IPHT // JenaPhotonics®
  • Dr. Markus Lankers, MIBIC GmbH & Co KG
  • Dr. Jörg Weber, Biophotonics Diagnostics GmbH

Abstract:

The current pandemic is a strong indication that there is an enormous need for fast and reliable diagnostics of infectious agents such as viruses and bacteria, if possible on site. The same applies to the massive increase in antimicrobial resistance. The diagnosis of infectious diseases, especially with biophotonic methods, is both a highly innovative field of research and a rapidly growing market. Scientific findings must be quickly translated into products.

This requires early, close cooperation between the various disciplines and industry. Accordingly, this panel will bring end users together with researchers and technology developers in the field of biophotonics and therefore starts with a presentation by a clinician to illustrate the medical requirements. Speakers from research and industry will translate medical requirements into technological needs and present solutions along the entire value chain.

Smart laser solutions for bio-hybrid organs
Chairs:

  • Prof. Jürgen Stampfl, TU Wien – Institute of Materials Science and Technology
  • Dr. Nadine Nottrodt, Fraunhofer-Institut für Lasertechnik ILT

Abstract:

The development of powerful, economic and compact laser sources enables the versatile use of such light sources in biofabrication. Cells respond to topographical, mechanical, and biochemical properties of the environment. Methods such as multiphoton lithography, laser induced forward transfer (LIFT) and orthogonal photochemistry enable the fabrication of three-dimensionally structured cell environments, defined in terms of both mechanical characteristics such as stiffness and viscosity and functional (biochemical) properties on a size scale corresponding to the dimensions of biological cells.

The application panel will discuss, among other things, current approaches to 3D and 4D cell cultures, which enable the production of organs or their precursors (organoids, spheroids, tissues) using the methods described above. The panel will focus on hybrid systems in which laser processing offers new concepts for better connection between biological and engineering systems.

Language: The application panels are held in English.
Location: At the forum in the respective exhibition hall.
Admission: The panels are open to all trade-fair visitors, exhibitors and congress participants.
Advertisment
Advertisment
Advertisment
Advertisment
Advertisment
Supporting program
Information program

Visitors who attend LASER World of PHOTONICS experience an information program that covers the world of photonics.

Information
Supporting program
Event calender

The event database of LASER World of PHOTONICS.

Event database
Visitors
Be part of it

Fast, easy and convenient: Secure your ticket now.

Tickets & Prices